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Abstract—The heterogeneity of technologies that operate over
the unlicensed 5 GHz spectrum, such as LTE-Licensed-Assisted-
Access (LAA), 5G New Radio Unlicensed (NR-U), and Wi-
Fi, calls for more intelligent and efficient techniques to co-
ordinate channel access beyond what current standards offer.
Wi-Fi standards require nodes to adopt a fixed value for the
minimum contention window (CWmin), which prohibits a node
from reacting to aggressive nodes that set their CWmin to small
values. To address this problem, we propose a framework called
Intelligent-CW (ICW) that allows nodes to adapt their CWmin
values based on observed transmissions, ensuring they receive
their fair share of the channel airtime. The CWmin value at a
node is set based on a random forest, a machine learning model
that includes a large number of decision trees. We train the
random forest in a supervised manner over a large number of
WLAN scenarios, including different misbehaving and aggressive
scenarios. Under aggressive scenarios, our simulation results
reveal that ICW provides nodes with higher throughput (153.9%
gain) and 64% lower frame latency than standard techniques. In
order to measure the fairness contribution of individual nodes,
we introduce a new fairness metric. Based on this metric, ICW is
shown to provide 10.89× improvement in fairness in aggressive
scenarios compared to standard techniques.

I. INTRODUCTION

The number of Wi-Fi access points (APs) that operate
over unlicensed bands is expected to increase by fourfolds
between 2017 and 2022 [1]. Unlicensed bands will also host
new wireless technologies, including LTE-LAA and 5G NR-
U [2]. Under NR-U, mobile network operators (MNOs) can
utilize the unlicensed spectrum to supplement their services
over licensed bands. The plethora of wireless technologies that
will have to coexist over the unlicensed spectrum create many
challenges related to fairness, transmission reliability, etc. In
this paper, we focus on one of these challenges namely, the
greediness of some devices that try to acquire most of the
channel airtime at the expense of others.
Several unlicensed-band technologies use a variant of Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA)
with exponential backoff for channel access. These include
Wi-Fi, LTE-LAA, DSRC, etc. According to the CSMA/CA
procedure, a station that wishes to transmit will first sense
the channel for a fixed duration called the initial Inter-Frame
Space (IFS). If the channel remains idle during the initial
IFS period, then the station starts transmission; otherwise, the
station defers its transmission and waits for a random backoff
period. The backoff period consists of k idle slots, where k
is randomly chosen from [0,CW − 1]. Initially, CW is set to
CWmin value and doubled after every collision until it reaches

the maximum size of contention window, i.e., CWmax. In other
words, a station that has consecutively collided for j times
chooses its k randomly from [0,min(2jCWmin,CWmax) − 1].
The exponential increase in contention window helps nodes
avoid collisions. Nodes with successful transmissions re-
set their contention window to the CWmin value. Although
CSMA/CA does an excellent job in ensuring fairness among
devices and reducing collisions, it is still vulnerable to aggres-
sive nodes that do not abide by the standard-defined CWmin
values, hence harming the performance of compliant nodes.
Enforcing specific CWmin values is hard because it is difficult
to detect and identify non-compliant nodes. Non-aggressive
nodes need a mechanism to detect aggressive behavior and
adapt their CWmin values accordingly, ensuring they receive
their fair share of the airtime. They also need to roll back to
their standard CWmin setting once aggressive nodes retreat to
a compliant behavior.

To cast more light on this issue, we conduct a simple exper-
iment in which three Wi-Fi nodes share the same unlicensed
channel. Two nodes, D2 and D3, are aggressive. They set
their initial CWmin value to 4. We consider two cases for
the setting of D1’s CWmin value. In Case 1, D1 chooses the
default CWmin = 16 value, while in Case 2, D1 randomly
chooses CWmin between 2 and 16. We plot the per-node
throughput in Figure 1. For Case 1, nodes D2’s and D3’s
traffic accounts for 91.26% of the network throughput, while
D1’s traffic accounts for only 8.73% of the total throughput. In
contrast, for Case 2 the random assignment of CWmin value
alleviates the unfairness issue and improves the throughput
of D1 by almost 2.5× (≈ 22.78% of the total throughput).
Rather than randomizing the selection of CWmin, in this paper
we exploit artificial intelligence techniques to achieve even
higher throughput at D1, close to its fair share of 33% of the
total throughput. Achieving this fair allocation is challenging
because the CWmin values of D2 and D3 are not known at
D1. In fact, D1 is not aware of the greedy behavior of D2

and D3.
To mitigate the impact of the aggressive setting of the

CWmin value, we introduce a framework called Intelligent-CW
(ICW), in which nodes adapt their CWmin values to coexist
fairly with their neighbors. Nodes become aware of the ag-
gressive activities of other nodes by observing the unlicensed
channel and obtaining some statistics about their neighboring
nodes, including the number of active neighbors and the
duration of time each neighbor occupies the channel. To
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Fig. 1: Per-node throughput for a network of 3 nodes, where
D2 and D3 are aggressive and set their CWmin values to 4
(Case 1: D1 sets its CWmin to 16, i.e., standard value; Case
2: D1 randomly selects its CWmin between 2 and 16).

accelerate the CWmin adaptation process, we equip each node
with a machine learning (ML) module, designed based on the
random forest, a well-known technique with several attractive
properties in terms of short training time and low compu-
tational complexity. Compared to other existing approaches,
our approach is more efficient, as it avoids computationally
intensive Markovian analysis approaches and the solving of
nonlinear equations [3]. It is also robust to dynamical changes
in the data that is fed to it, and is resistant to over-fitting. We
design a rule to help nodes detect the aggressive behavior of
their neighbors and select the best CWmin values that maximize
fairness.

ICW is practical for two reasons. First, it is trained to gen-
eralize to large-size WLANs. Secondly, it is designed to work
in a distributed fashion, with light computations and no com-
munication overhead. Our simulation results reveal that on the
presence of aggressive nodes, ICW increases the throughput
by 153.9%, decreases the average per-frame latency by 64%,
and most importantly, based on the new fairness metric that we
define to measure the fairness contribution of individual nodes,
ICW provides 10.89× improvement in fairness in aggressive
scenarios compared to standard techniques. Also, ICW rolls
back to standard setting when aggressive nodes abandon their
greedy behavior.

The paper is organized as follows. Section II provides
some background about decision trees and random forest.
In Section III, we introduce the main components of the
ICW framework. The ML module is presented in Section IV,
followed by evaluation results in Section V. Finally, we survey
related works and conclude the paper in Sections VI and VII,
respectively.

II. BACKGROUND: DECISION TREE AND RANDOM FOREST

A classification problem consists of objects that need to
be classified into one of several candidate classes. Each
object has a set of Nf features, described by a vector
v = 〈v1, v2, ..., vNf

〉 in the feature space RNf , where vj is
a variable that corresponds to the value of the jth feature,
j = 1, ..., Nf . In Figure 2(a), we present an example of object
representation in R2, i.e., Nf = 2, and could belong to either

(a) (b)

Fig. 2: (a) Example of a feature space of two classes (circles
and triangles), and (b) the decision tree that is used to classify
objects into these classes.

of two classes, i.e., circles or triangles.

A decision tree is an ML structure that is used for classi-
fication. Such a tree consists of a root node, internal nodes,
terminal nodes (leaves), and branches that connect these nodes,
as shown in Figure 2(b). Leaves correspond to the classes that
objects could belong to. To classify an object, we start from the
root, walk through the tree from top to bottom until we reach
the correct leaf that represents the class of the object. The
root and the internal nodes are each associated with features
and cut-points that specify the path that an object needs to
traverse across the tree. The mapping between root/internal
nodes and their corresponding features and cut-points is part
of the training process and the construction of the decision
tree. One of the algorithms used for constructing decision
trees is the recursive binary splitting (RBS) algorithm [4]. This
algorithm finds the best feature, say vj , and cut-point value,
say φj , for each split, such that it has the minimum loss, where
the loss function can be the Gini index. The loss function is
used to assess how good a split is by measuring the variance
of an object class in the branches constructed by that split [4],
e.g., a low Gini index over objects that pass a specific branch
means that these objects have low dispersion and they are
more likely to belong to the same class. Figure 2(b) shows an
example of a decision tree for classifying the objects in Figure
2(a). Construction of this decision tree requires learning the
proper mapping of vj and cut-point φj at each split.
A random forest improves the classification accuracy of a

decision tree by using multiple differently constructed decision
trees that operate in parallel. A random forest with d decision
trees classifies an object by feeding it to each tree and later
obtains d classification results. The mode of these d results is
then used to produce the final classification output. Figure 3
represents an example of a random forest that classifies the
objects in Figure 2(a) into two classes.

III. INTELLIGENT-CW FRAMEWORK

Our goal is to adapt CWmin to achieve fair sharing of
unlicensed channels in the presence of aggressive nodes that
manipulate their CWmin values. To reach this goal, we define
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Fig. 3: Example of a random forest with d trees.

a fairness criterion that helps nodes detect the aggressive
behavior of other nodes and trigger the adaptation of CWmin.
This requires nodes to monitor the wireless channel and collect
observations and statistics about their neighboring nodes. We
now present our system model, the required observations, and
the fairness criterion used for CWmin adaptation.

A. System Model

We consider a network model in which an intelligent
node, say node I , shares an unlicensed channel with N
other nodes in its vicinity, as shown in Figure 4. Let D =
{D1, D2, ..., DN} be the set of nodes in the neighborhood of
node I . Nodes rely on CSMA/CA with exponential backoff
to access the channel. Some of them fix their CWmin value
to a standard value (e.g., 16), while others act aggressively
and choose low CWmin values, allowing them to receive an
unfair share of the channel airtime. Let ω be the CWmin
value of node I , and let wj be the CWmin value of node
Dj ∈ D, j = 1, ..., N . Node I adapts ω by implementing
ICW, using observations made over a given time period T . It
is important to note that node I is not aware of the CWmin
values used by its neighbors, but it can keep track of the
number of active neighbors as well as the durations they
occupy the channel. Although our system model is based on
one intelligent node I , it can be generalized to include arbitrary
numbers of intelligent, well-behaving, and misbehaving nodes.
We choose to include one intelligent node for brevity and ease
of illustration.

B. Observations

By monitoring the channel for a period T , node I collects
the following information:
• B: channel busy time as observed by node I .
• F : total time during which node I occupies the channel.
• n: number of frames sent by node I during the T period.

We denote the CWmin value that node I uses during the T
period by ω, and the CWmin value recommended by its ML
module right after the T period by ω̂. In Figure 5, we provide
an example that shows the observations made by node I when
it shares the channel with two other nodes, i.e., N = 2.

Fig. 4: System model of a WLAN that consists of an intelligent
node I that shares an unlicensed channel with N other nodes
(nodes D2 and DN are aggressive nodes).

Fig. 5: Example of monitoring the channel over a period of T
seconds.

Node I determines the total busy duration as B = b1 + b2,
where bj , j = 1, 2, is the jth duration during which node
I finds the channel to be busy by some other node. Node I
occupies the channel for a period F = f1 + f2, where fj
is the jth transmission duration for node I . By the end of
T , node I determines that N = 2 and n = 2, and it passes
the set of observations and configurations F , B, T , n, N ,
and ω as a feature vector v = 〈F,B, T, n,N, ω〉 to its ML
module to determine ω̂ that will be used over the next T
seconds. We select these six specific features to enhance the
classification accuracy of the ML module, and because these
features include statistics that correlate with the CWmin values
of other neighboring nodes. It is important to note that T needs
to be set large enough to ensure that node I collects sufficient
statistics.

C. Fairness Criterion

Node I relies on a fairness rule to detect aggressive behavior
and trigger the adaptation of its CWmin value. Before we
introduce our fairness rule, we define the following metrics.

Definition 1. The channel-Utilization-by-Neighbors (CUN) ρ
is defined as the ratio of the total channel busy time as seen
by node I and the observation duration: ρ = B

T .

Definition 2. The optimal Channel Utilization Factor (OCUF)
is defined as Ω = N

N+1 .
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Definition 3. The state of the wireless channel is the vector
S = 〈w1, w2, ..., wN 〉 of the CWmin values adopted by the
neighbors of node I .

Our fairness rule from the perspective of node I states that
ω̂, the CWmin value produced by the ML module, is fair and
efficient if the neighbors of node I end up occupying N

N+1
fraction of T . In other words, ω̂ should lead to a future ρ
value that satisfies ρ = Ω. If node I is aware of the state S,
then it can compute an optimal CWmin value. In practice, it is
hard for node I to know the CWmin values of its neighbors,
since such values are not broadcasted. Instead, node I can rely
on overheard information, i.e., B, F , n, and N , to recommend
a fair ω̂ value. The ML module exploits this information to
recommend an optimal ω̂ that is aligned with our fairness
criterion. In the next section, we explain how the ML module
can be trained to achieve this objective.

IV. ML MODULE DESIGN

The ML module adapts the CWmin value of node I based
on the vector of features that it receives as inputs, i.e.,
v = 〈F,B, T, n,N, ω〉 , and classifies them to a proper ω̂
value to be used in the next T period. We conduct extensive
simulations using a customized simulator and collect a large
number of input samples along with their best CWmin values,
obtained through exhaustive search. We use these values as
labels to train the ML module in a supervised manner. We
denote the optimal CWmin value that we expect the ML module
to produce by ω∗. In the test phase, we expect the ML module
to produce ω̂ = ω∗ values for newly generated inputs. Next,
we explain how we derive the ω∗ labels and how we build a
training dataset for different channel states.

A. Dataset Construction

To train the ML module in a supervised manner, we build a
dataset that consists of feature vectors and their associated
labels. The feature vector includes the set of observations
that node I monitors during T and the configurations that
it uses during the monitoring period. To obtain the label for a
particular state, say state S, we gradually increase the CWmin
value that node I uses, i.e., ω, in the interval δ̄ = {δ1, ..., δ2},
where δ1 and δ2 are two arbitrary positive integers, and
monitor the set of observations associated with each ω. We
compute ρ = B

T , then we search for the ω value that best
approaches ρ = Ω. The optimum label for node I can then be
found as:

ω∗ = argmin
ω∈δ̄

|ρ− Ω| . (1)

Figure 6 depicts a sample of our results when node I shares
a channel with two other nodes whose CWmin values are set
to w1 = 9 and w2 = 4, i.e., S = 〈9, 4〉. In this example, the
OCUF is 0.66 (shown by the dashed red line in Figure 6(a)).
We vary ω from 2 to 16 and monitor the CUN value. As can
be observed in Figure 6(a), there are two candidate ω values
that are close to Ω: ω = 5 and ω = 6. We choose the ω value
for which ρ has the least difference from Ω to be the label
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Fig. 6: (a) Channel utilization by neighbors vs. CWmin of node
I , i.e., ω, when N = 2 and S = 〈9, 4〉, and (b) the |ρ − Ω|
vs. ω (Ω = 0.66).
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Fig. 7: Channel utilization by neighbors vs. CWmin of node I
with N = 2 for 10 different states (ω∗ values are represented
by squares).

of this specific state, as shown in Figure 6(b). Accordingly,
we set ω∗ = 6 to be the label for the state S = 〈9, 4〉. Note
that the optimal label ω∗ depends on the state. In Figure 7,
we plot the CUN versus ω for 10 different states, and we
observe that the ω∗ value is different for different states.

Figure 8(a) depicts a flowchart that shows the construction
of the training dataset for node I . The table in Figure
8(b) includes the training dataset of one state with each
row corresponding to one training sample. We set our
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customized WLAN simulator to a specific state S, initialize
ω and ω∗ to δ1,

∗
ρ to zero, where

∗
ρ is the CUN value

corresponding to the most recent ω∗, and run the simulator
for T seconds. During this duration, we keep track of node
I’s observations and fill the corresponding row of the table
in Figure 8(b). At this moment, we still do not know the
correct entry of the last column, i.e., ω∗. We have to wait
until we exhaustively run the simulator for other ω values.
After each run, we check if |ρ − Ω| is less than or equal
to |∗ρ − Ω|. If the condition is satisfied, then ω∗ and

∗
ρ are

updated to the current ω and ρ values, respectively. We
increase ω by 1 and repeat the process until ω reaches δ2.
At this point, we fill the last column of the dataset table
in Figure 8(b) with the most recent value of ω∗. We repeat
the same procedure for a new channel state and construct
a large set of training tables. These dataset tables are used
to train the ML module in a supervised manner. The set of
best CWmin values, i.e., ω∗, correspond to the labels of classes.

B. Decision Trees & Random Forests

We first explain the construction of one decision tree, and
then we explain the construction of the random forest.

1) Construction of a Single Decision Tree: Let R be the set
of training samples obtained as in Section IV-A. A decision
tree of depth J divides the feature space into L = 2J

distinct and non-overlapping regions, R1, R2, ..., RL, where
each region corresponds to a particular class. Samples of one
class could be part of multiple regions. These regions will
end up being leaves of the decision tree. In order to have
a fast training phase, we use recursive binary splitting (RBS)
algorithm to build the decision trees. To fully understand RBS,
first we introduce the Gini index. Consider an arbitrary set
rm of samples that potentially belong to different classes, i.e.,
rm ⊂ R. The Gini index G(rm) of the set rm can be expressed
as:

G(rm) =

K∑
k=1

pk(rm)(1− pk(rm)) (2)

where K is the number of classes to which samples in the set
rm belong, and pk(rm) is the proportion of training samples
that belong to class k and are also in the rm set. Gini index
measures the dispersion of the samples in the set rm. A low
value of Gm indicates that the samples in rm are more likely
to belong to the same class.

To build a decision tree, we start with the root of the
decision tree and look for a feature vj and a cut-point value
φj that split R into two subsets r1 = {v : vj ≤ φj , v ∈ R}
and r2 = {v : vj > φj , v ∈ R} such that the value
G(r1) + G(r2) is minimized. Each of these subsets is repre-
sented by an internal node below the root. The splitting process
is recursively repeated for each subset, i.e., splitting them
into two new subsets such that the sum of the Gini indices
over them is minimized. This way, internal nodes become
parents to new nodes beneath them. For instance, we can

split r1 into two new subsets r11 = {v : vi ≤ φi, v ∈ r1}
and r12 = {v : vi > φi, v ∈ r1} such that the feature
vi and cut-point value φi are selected to minimize the sum
G(r11) +G(r12). The splitting process is continued until the
depth of the decision tree is J .

2) Construction of Random Forest: A random forest of
depth d has d uncorrelated decision trees inside it. Each tree
is constructed as explained before, but for each split we only
consider b

√
Nfc random features, i.e., b

√
Nfc = b

√
6c = 2

in our case. After building the random forest, the sample that
needs to be classified is fed to each one of these d trees, while
each tree executing its own classification. The random forest
takes the mode of these d classifications as its final output.

C. Flexible Testing Accuracy
Depending on the state of the channel, we may end up with

multiple CUN ρ values that are close to the OCUF. For ex-
ample, in Figure 6(a), we have two candidate ω values whose
ρ value is close to Ω. We define the accepted classification
range to relax the classification accuracy of the ML module
so as to include multiple

∗
w values as potential labels.

Definition 4. Accepted Classification Range (ζ)
We define ζ as an upper bound on the absolute difference

between CUN and OCUF for which ω̂ is accepted to be an
optimal label. In other words, ω̂ is accepted as an optimal
label if it satisfies the following:

|ρ− Ω| ≤ ζ. (3)

Previously, we saw in Figure 6(a) that the only optimum
label was ω∗ = 6; however, by taking ζ = 0.05 , we will have
two acceptable ω∗ values, i.e., ω∗ = 6 and ω∗ = 5 (see red
circles in Figure 9).

D. Fairness Measures
We use two fairness measures to assess how ICW improves

fairness from both network and node I perspectives. Jain’s
index is a fairness metric that can be used for measuring the
fair allocation of throughput from a network level [5]. Consider
a network of m nodes, where the ith node has a throughput
of Γi. Then Jain’s index (J) is expressed as follows:

J =

(
m∑
i=1

Γi)
2

m
m∑
i=1

Γ2
i

. (4)

When J = 1, all m nodes in the network have equal
throughput. Hence, the channel has been fairly allocated
between them.
Node I should be fair to other nodes in its vicinity. To study
whether or not node I is being fair to others, we define a new
metric called One-Way Fairness (OWF) denoted by β:

β =

∣∣∣∣BF −N
∣∣∣∣ . (5)

When β = 0, then node I is fair to other nodes in its
vicinity.
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Fig. 8: (a) Flowchart for constructing the training dataset in the ICW framework, and (b) example of the dataset table for one
channel state.
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Fig. 9: Channel utilization by neighbors (ρ) vs. ω (Accepted
CWmin ω

∗ are shown as red circles and non-accepted values
are shown as blue triangles for ζ = 0.05).

V. EVALUATION

In this section, we first evaluate the classification accuracy
of the ML module, followed by the performance of the
ICW framework, including throughput, latency, and fairness
measures (Jain’s fairness index and OWF). Our evaluation is
based on a C++-based discrete-event-based simulator called
CSIM [6]. CSIM includes functions and classes for generating
and synchronizing process-oriented events. We implement the
DCF as detailed in the IEEE 802.11 ac standard, including
all timing requirements. An indoor scenario is considered,
where a number of Wi-Fi devices are uniformly distributed
in a square area of length 40 meters.

A. Classification Accuracy of ML Module

We consider four WLAN scenarios. For the first three
scenarios, we fix the number of node I’s neighbors to N = 2,
N = 5, and N = 8, respectively. In the fourth scenario, we
randomly select N from {2, 5, 8}. We denote this last case
as the “combined” scenario. For all scenarios, we have eight
classes of ω∗, ranging from 2 to 9. We consider 10000 samples

to represent each class in the first three scenarios. The ML
module is trained using 53600 samples and tested over 26400
samples for these scenarios. In the fourth scenario, each class
is represented by 30000 samples. Training for this scenario is
done using 160800 samples and testing is done using 79200
samples. We investigate the impacts of d, the random forest
depth, and J , the depth of its constituent decision trees, on the
accuracy of classifying the optimal CWmin value. In Figure
10, we plot the classification accuracy vs. J for all four
scenarios. The depth of the random forest is fixed at d = 200,
and the accepted classification range is set to ζ = 0.04. We
notice that the classification accuracy reaches a fixed value
after J = 20 for all four scenarios. Accordingly, we set
J = 20 in our subsequent experiments. In Figure 11, we
plot the classification accuracy of the random forest versus
d when J = 20 and ζ = 0.04. Notice that the classification
accuracy saturates after d = 20. Therefore, we select 20 as
the number of trees in the ML module. In Figure 12, we
plot the classification accuracy for the four scenarios versus
ζ. At ζ = 0.04, we can achieve classification accuracy of
92.24%, 93.65%, 97.07%, and 93.37%, for the four scenarios,
respectively. Under a fixed ζ, we observe that the classification
accuracy improves with N . This is due to the fact that a larger
N results in more candidate ω∗ values within the fixed ζ range.
It can also be observed that the classification accuracy under
the combined scenario mediates the classification accuracy of
its constituent three cases.

B. WLAN Performance

We compare the performance under the ICW framework
with two other mechanisms for controlling the CWmin value
at node I: The standard IEEE 802.11 DCF and a randomized
(Rnd) CWmin mechanism. In the DCF mechanism, CWmin
is fixed to 16. In the Rnd mechanism, CWmin is randomly
selected from {2, 3, ..., 16}. We run the simulator 10000 times
and report the mean of these runs. We investigate the impact
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Fig. 10: Classification accuracy of random forest vs. the depth
of its decision trees (J).
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Fig. 11: Classification accuracy of the random forest vs. its
depth (d).

of CWmin of node I on the throughput, latency, and fairness
of an arbitrary WLAN setup with two other nodes (labeled
as D1 and D2) and state S = 〈4, 8〉. In Figure 13(a), we plot
the network throughput versus ω. In Figure 13(b), we plot
the per-frame latency versus ω. We notice from Figures 13(a)
and 13(b) that varying ω changes the throughput and latency
over the network for all nodes. To derive the optimal ω that
maximizes fairness for the given state S, we plot Jain’s index
versus ω in Figure 13(c). Node I achieves the second-highest
Jain’s index of 0.895 when ω = 5. To see which ω results
in node I being the fairest to its two neighbors, we plot
OWF versus ω in Figure 13(d). We can observe that ω = 5
achieves the least value of OWF. By setting CWmin to 5
node I treats the two other nodes fairly and also utilizes the
channel efficiently.

To compare ICW’s performance with DCF and Rnd mecha-
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Fig. 12: Classification accuracy of random forest vs. ζ.

nisms, we consider 6 different states S, namely, 〈4, 4〉, 〈8, 8〉,
〈16, 16〉, 〈4, 8〉, 〈4, 16〉, and 〈8, 16〉.

1) Throughput: In Figure 14, we plot the per-node through-
put resulting from the three different CWmin selection mech-
anisms. Under the DCF mechanism, we observe that node
I behaves conservatively, leading to low throughput. On the
other hand, Rnd mechanism makes node I too aggressive
in some cases, e.g., S = 〈16, 16〉. Node I is the fairest to
its neighbors when it implements the ICW mechanism. An
interesting observation is the ICW performance under channel
state S = 〈16, 16〉. In this case, the ICW mechanism forces
node I to behave as in the standard DCF, meaning that ICW
triggers node I to be standard-compliant when other nodes are
also compliant. We also computed the average throughput of
node I under ICW and for various values for S and compared
it with the DCF throughput. Overall, we found that ICW
improves the throughput by 153.9%.

2) Latency: In Figure 15, we plot the average per-frame
latency for each node vs. the state S under the three selection
mechanisms. Under ICW, node I achieves a lower latency than
DCF for all values of S, while it has the same performance as
DCF in the standard state, i.e., S = 〈16, 16〉. To calculate
the improvement in latency, we compute the average per-
frame latency of node I under ICW and compare it with DCF
scheme. We found that ICW achieves 64% of the DCF latency.

3) Fairness: In Figure 16, we plot Jain’s index for the three
mechanisms vs. S. We observe that ICW has the best fairness
index for all states, while it has the same performance as the
DCF in the standard setting, i.e., S = 〈16, 16〉. In Figure 17,
we plot OWF vs. S. It can be observed that ICW has the
lowest OWF value for all states and this proves that node I ,
under ICW, is the fairest to its neighbors. To calculate the im-
provement in fairness, we calculated the average Jain’s index
improvement of ICW over all states except the standard case,
i.e., S = 〈16, 16〉. ICW provides up to 19.34% improvement
in Jain’s index when compared to DCF. We also found that
ICW could reduce the OWF down to 90.81% when compared
to DCF, which translates to about ×10 improvement in OWF
fairness.

VI. RELATED WORKS

In [7] the authors discussed how exponential backoff harms
the performance. To tackle this issue and improve both fairness
and network throughput, Chetoui et al. [8] provided each
node in the WLAN with a set of backoff windows. Nodes
select one of the windows based on their downlink bitrates
rather than complying with the DCF protocol. To achieve
high fairness among nodes and stability in throughput and
delay, the authors in [9] proposed a deterministic algorithm
for adjusting the CW bounds (i.e., upper and lower bounds of
the interval from which the counter is randomly selected) to
keep the collision rate low and reduce the number of retrans-
missions. Instead of only doubling the upper bound of CW,
their algorithm increases both backoff range bounds. After
each successful transmission, the CW bounds are decreased
based on the current and previous network load. The authors
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Fig. 13: (a) Downlink throughput, (b) per-frame latency, (c) Jain’s index, and (d) OWF vs. the CWmin of node I .
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Fig. 14: Downlink throughput under the three different CWmin
selection mechanisms for different states S.

in [10] used a feedback-control system with a Proportional-
Derivative (PD) controller for adjusting the CW value at each
node so as to maximize channel utilization. Pries et al. [11]
introduced a measurement-based scheme to adapt CWmin and
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Fig. 15: Latency for the three different mechanisms for differ-
ent states S.

CWmax so as to minimize the contention delay and maximize
throughput. The authors in [12] proposed a game-theoretic
model for contention control, they applied a distributed update
algorithm to achieve the equilibrium of the model, whereby
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Fig. 16: Jain’s index for the three different mechanisms vs. S.
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Fig. 17: OWF (β) for the three different mechanisms vs. S.

the network achieves high throughput, low collision, and
short-term fairness. Kang et al. [13] presented an estimation-
based algorithm to produce a new CW value to enhance
both throughput and delay after each collision or a successful
transmission by estimating the number of active nodes and
network load variation. To enhance throughput and reduce
delay, Patras et al. [14] developed a proportional-integral
(PI) controller for adapting CWmin based on the number of
successful transmissions and the number of retransmissions
over a period of time. Chun et al. [15] derived an optimal
CW setting to increase short-term fairness and improve the
total network throughput. Their approach is based on the
number of active nodes in WLAN. The authors developed
an algorithm to predict the future number of nodes based on
current network status and used this information to configure
the CW value for all the nodes in the network. Nodes with
different applications in the WLAN have different expectations
from the network, e.g., real-time services, such as video
conferencing and voice over IP require certain throughput and
have a delay constraint so that they meet their Quality of
Service (QoS). To meet such QoS, the authors in [16] proposed
an adaptation mechanism for infrastructure 802.11 WLANs.
They used deep neural networks to set the CWmin value and

the Arbitrary Inter-Frame Space (AIFS) value for all nodes
based on changes in the channel conditions and the number
of active nodes. Unlike our work, the authors in [16] did not
consider the existence of aggressive nodes in the WLAN. Also,
their adaptation relies on communication between each AP and
its corresponding stations, whereas in ICW, nodes configure
their CWmin value in a distributed fashion. In [17], the authors
proposed an adaptive backoff algorithm to maximize total
network throughput and achieve high fairness by producing a
new CW value based on the estimated number of active nodes
and channel state probabilities. In [18], the authors proposed a
modified DCF backoff process, in which the backoff counter
is decremented based on channel idleness as well as the
number of active nodes on the same channel. To reduce
collisions between WLANs and duty-cycled LTE-unlicensed
(LTE-U) transmissions, the authors in [19] exploited AI-based
techniques whereby WLAN devices adapt their transmission
rates and the direction of communication depending on LTE-U
interference. Their work has also been extended to increase the
sum-throughput for asymmetric full-duplex-enabled WLANs,
serving QoS-enabled traffic [20].

VII. CONCLUSIONS

In this paper, we discussed how the aggressive setting
of CWmin value can impair the performance of nodes that
adopt a standard-based CWmin setting. We introduced the
ICW framework, which adapts the CWmin value for standard-
compliant nodes when the network contains aggressive nodes.
ICW has the capability of rolling back to standard settings
when aggressive nodes abandon their aggressive behaviors.
It achieves high throughput efficiency while maintaining fair
allocation of the unlicensed channels with other neighbor-
ing nodes. One of the most important features of ICW is
that its learning structures can be easily trained and opti-
mized to ensure high spectrum efficiency while being fair to
other coexisting systems. ICW can be used in heterogeneous
WLANs to provide fairness between different technologies.
Our adaptation module predicts the correct CWmin value with
93.37% accuracy, achieves up to 10.89 times higher fairness,
and increases throughput by 153.9% compared to the DCF
mechanism in WLANs containing aggressive nodes.
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