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Abstract—Recent advances in the design of in-band full-duplex
(IBFD) radios promise to double the throughput of a wireless link.
However, IBFD-capable nodes are more vulnerable to jamming
attacks than their out-of-band full-duplex (OBFD) counterparts,
and any advantages offered by them over the OBFD nodes can
be jeopardized by such attacks. A jammer needs to attack both
the uplink and the downlink channels to completely break the
communication link between two OBFD nodes. In contrast, he only
needs to jam one channel (used for both uplink and downlink)
in the case of two IBFD nodes. Even worse, a jammer with the
IBFD capability can learn the transmitters’ activity while injecting
interference, allowing it to react instantly with the transmitter’s
strategies. In this paper, we investigate frequency hopping (FH)
technique for countering jamming attacks in the context of IBFD
wireless radios. Specifically, we develop an optimal strategy for
IBFD radios to combat an “IBFD reactive sweep jammer”. First,
we introduce two operational modes for IBFD radios: transmission-
reception and transmission-detection. These modes are intended to
boost the anti-jamming capability of IBFD radios. We then jointly
optimize the decision of when to switch between the modes and
when to hop to a new channel using Markov decision processes.
Numerical investigations show that our policy significantly improves
the throughput of IBFD nodes under jamming attacks.

I. INTRODUCTION

Recent advances in self interference suppression (SIS) (e.g.,
[1], [2]) allows a transmitting device to suppress its self-
interference up to the noise floor, enabling wireless radios to
simultaneously transmit and receive on the same channel. This
in-band full-duplex (IBFD) capability not only doubles link
throughput but also helps solve various issues (e.g., Tx deafness,
hidden/exposed nodes) at the MAC and network layers [3]. A
network of IBFD radios has the potential to double the network
throughput, compared with half-duplex (HD) radios that have to
alternate in time/frequency/code between transmit and receive
modes. However, such a network is also more vulnerable to
jamming attacks. In this work, we identify such jamming threats
and investigate mitigation techniques that optimally leverage the
simultaneous transmit-and-receive capability of IBFD devices.

In a jamming attack, an adversary (jammer) can hinder le-
gitimate transmissions in one of two ways: (i) he can inject
interfering power into the wireless medium, thus degrading
the signal-to-interference-plus-noise ratio (SINR) at a legitimate
receiver, and (ii) in carrier-sensing systems, a persistent jammer
can prevent a legitimate transmitter from accessing the medium,
effectively creating a denial-of-service attack (DoS). Such stealth
jamming attacks can be easily launched by an adversary using
commercial off-the-shelf (CoTS) products [4]–[6]. In this work,
we focus on the former type of jamming attack.

The jamming consequences on IBFD radios is particulary
acute. First, compared with out-of-band full-duplex (OBFD)
systems, which include HD devices as a special case, a jammer
can interfere with both the uplink and downlink simultaneously
(as both IBFD radios that are within the same vicinity are likely
suffer the same jamming effect). Second, unlike OBFD radios,
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Fig. 1: Effect of jamming on IBFD and OBFD nodes.

operating in IBFD mode hinders the nodes’ jamming detection
capability, especially under the fading effect. Specifically, under
fading, a transmission failure is not always caused by jammer
while the jamming interference (if any) perceived by RF receiv-
ing chains is distorted by self-interference due to imperfect SIS.
Third, a jammer with IBFD capability can discern the outcome
of its jamming instantaneously, while continuously attacking
legitimate transmissions.

Several physical-layer techniques have been developed to
mitigate jamming. These include spread spectrum (particularly,
frequency hopping (FH)), directional antennas, and adaptive
power/coding/modulation. Jammer-specific techniques have also
been developed [4]. Common jamming models in the literature
include random, persistent, proactive, and reactive jammers [5],
[7]. This classification is based on the channel behavior and the
jammer’s transmission capabilities. Persistent jammers always
emit power into the medium. Proactive jammer can vary the
power to meet various constraints. A reactive jammer exhibits
more sophisticated capabilities, and emits power only when it
detects a legitimate transmission [6]. In this paper, we consider
a jammer with an IBFD capability, referred to as “IBFD reactive
sweep jammer”. This jammer sweeps through blocks of m
channels in each slot. Further, while jamming, the jammer can
simultaneously learn if the attack is successful and accordingly
adapts its strategy (thanks to its SIS capability). Our jamming
model explained in detail in Section III.

If a transmission fails, the sending nodes should not always
hop to a new channel as this channel can be experiencing fading
and hopping involves reduction in throughput due to the need to
allow the oscillator to settle down after changing its operating
frequency. However, if a node can reliably detect the presence
of a jammer, it should hop to evade this jammer. As noted in [4]
it is not possible to reliably identify the presence of a jammer
through measurements only. Hence it is necessary to use some
consistency checks to ascertain such presence. The jamming
mitigation technique we develop uses the packet delivery ratio
(PDR1) as an indicator of potential jamming activity, while
leveraging the simultaneous transmit and receive capability of
IBFD nodes to reliably confirm that.

Our proposed method defines two operational modes for each
IBDF node: Transmission Reception (TR) and Transmission
Detection (TD). In the TR mode, a node can transmit and receive

1PDR is the ratio of the number of packets successfully decoded to the number
of received packets.
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data simultaneously. In the TD mode, a node does not transmit
any data packets but only receives, i.e., acts as a receiver. When
the PDR between a pair of nodes is low, one of the nodes
can switch to TD mode. This node then receives only ambient
noise and can thus identify the link quality by measuring signal
strength (RSS). This information in turn can be used to reliably
confirm the cause of low PDR. Specifically, if the RSS is high but
the PDR is low, then the high RSS is likely from the jammer’s
interference power. On the other hands, if the low PDR is caused
by fading, then the RSS will be low. Note that in the TD mode,
the higher throughput of IBFD radios is not possible, but any
jamming activity can be reliably detected. On the other hand,
if the nodes operate in the TR mode, they get higher spectral
efficiency, but jamming activity cannot be detected.

In this work, the behavior of IBFD radios to combat a
IBFD reactive sweep jammer is captured by a Markov decision
process [8]. The strategic decisions of IBFD radios regarding
which mode to operate and when to hop to a different channel
(equivalently, the duration of the channel residency time) are
jointly optimized so that the aggregate throughput is maximized
(under both discounted and average reward criteria ). The main
contributions of the paper include:
• We identify the severe susceptibility of IBFD radios to

jamming attacks from IBFD-capable jammers.
• We analyze a jamming scenario in a network with IBFD

radios and discuss the attack and defence strategies of the
jammer and the nodes, respectively.

• We define two operational modes for the nodes that help
them identify the cause of poor link quality. We then derive
the optimal strategy based on the total discounted reward
and the average reward criteria. Such a strategy informs
an IBFD node when to hop to a new channel and which
operational mode to use.

• We compare the performance of the jointly optimal FH
and mode-switch strategy with the optimal strategy that
is based on FH only (i.e., without switching between
the two proposed operating modes). Through numerical
simulations we show that the defense strategy obtained by
jointly optimizing FH and mode switching results in better
performance than that based on FH only.

Related work: Jamming and anti-jamming techniques are well
studied in wireless networks with HD and OBFD devices (see
[9], [10] and therein references). Below we only discuss the
papers that are most related to our work in terms of attack
model and defense strategies. In [11] the authors developed
an FH strategy against a “sweep jammer” in 802.11 networks.
Their hopping strategy optimizes the channel residence time. A
similar hopping strategy was developed in [12] using MDP for a
cognitive radio network. The authors in [13] developed a defense
strategy, combining FH and rate adaption techniques.

Recently, several authors proposed protocols that leverage
IBFD capabilities to improve the performance of ad hoc and
cellular networks [14], [15], [16]. However, they did not take
into account the vulnerability of IBFD nodes to jamming attacks.
In [17], [18], IBFD nodes are treated as jammer-cum-receiver
devices, whereby eavesdroppers are prevented from listening
to the communication through friendly jamming. The issue of
“non-friendly” jamming attacks on the IBFD nodes was not
considered.

To the best of our knowledge, this paper is the first to study
jamming attacks on IBFD devices and to develop jamming
mitigation techniques that exploit the simultaneous transmit and
receive capabilities of these devices.
Paper organization: In Section II we describe the problem
setup. In Section III we study the attack and defense strategies

of the jammer and the IBFD nodes, respectively. The optimal
defense strategies of the transmitter are derived in Section IV
using the MDP. Its performance evaluation through numerical
simulation is given in Section V. Finally, in Section VI we
discuss future work and give concluding remarks.

II. MODEL AND SETUP

Consider two IBFD nodes A and B that communicate in the
presence of a jammer, as shown in Figure 1. The two nodes have
IBFD radios that can operate on any of K available channels.
Let F = {f1, . . . , fK} denote the set of non-overlapping chan-
nels. Each channel experiences additive white Gaussian noise
(AWGN), which is independently and identically distributed
(i.i.d.) across all channels.
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Fig. 2: TR mode
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Fig. 3: TD mode

A. Transmitter and Channel Models
We assume that time is slotted, and transmissions are packet

based. In each time slot, several packets can be transmitted.
During this time, the states of the transmitter and the jammer
remain unchanged. Nodes transmit at a fixed power in each
time slot, and the jammer injects additive interference into the
channels to degrade the received SINR.

The two-state Gilber-Elliot channel model [19] is used to
characterize the fading process. At a given point in time, each
channel can either be in a fading state with probability (1-p) or
not with probability p. We assume that when the channel is not
under fading, a transmission always succeeds in the absence of
jamming attack. In contrast, if the channel is in the fading state,
the transmission always fails irrespective of jamming. We further
assume that the fading status is independently and identically
distributed (i.i.d) across time and all channels. Note that our
analysis here can also be manipulated to accommodate (a more
realistic) finite-state Markov channel model.

With IBFD capability, when both uplink and downlink are
active, the net throughput achieved in the absence of jamming is
ξ1R+ξ2R, where R denotes the throughput obtained when only
one of the link (uplink or downlink) is used and 0.5 < ξi ≤ 12 for
i = 1, 2 denotes the fraction of throughput loss due to imperfect
SIS at node i. ξi is referred to as the SIS factor. We assume
that both nodes are identical in their SIS capabilities, hence set
ξ :

def
= ξ1 = ξ2.

Modes of Operation: In the TR mode, a node transmits and
receives simultaneously on a link. In the TD mode, a node does
not transmit, but only receives data packets from the other. With
some abuse of terminology, we say that a pair of nodes operate
in TR mode when both of the IBFD nodes operate in the TR
mode (Fig. 2), and we say that they operate in TD mode when
one of them operates in the TD mode while the other operates
in the TR mode (Fig. 3). When one of the nodes, say node A
in Figure 3, operates in the TD mode, node B only receives the
ambient noise and can measure its strength. If both the nodes
are under jamming attack, then any of the nodes can operate in
the TD mode and the other node can measure the strength of the
ambient noise over the same channel. If the jammer can attack

2ξi > 0.5 to make sure that operating in the full-duplex TR mode yields
higher throughput than the half-duplex mode.



only one of the nodes and not the other3, then the node that is
in close proximity to the jammer suffers low PDR, hence this
node can measure the power of ambient noise if the other node
operates in the TD mode. In the rest of the paper, we assume
that which node enters into the TD is agreed upon a priori and
focus on the scenario where the jammer can attack both the
nodes simultaneously, as depicted in Figure 1. Our strategy can
be easily adopted to other cases.

Switching and Transmission Cost: When the nodes hop, they
are first required to reconfigure the device on the new channel
and cannot immediately start the transmissions. The duration
this settling time depends on the device (e.g., for the Anthros
chipset card, this time is about 7.6 ms [11]). Additional loss in
throughput occurs due to the lack of synchronization between
the Tx and Rx’s hopping instances. Collectively, we denote the
average loss in throughput due to hopping by C, and refer to it
as switching cost. Outage periods also occur when the nodes are
jammed. Jamming disrupts the link between the nodes, which
needs to be re-established through exchanging several control
packets that do not contribute to data throughput. We denote the
average loss in throughput due to jamming by L, and refer to it
as transmission cost. We account for C and L in deriving the
optimal defense policy of the Tx.

B. Jamming Model
A jammer with unrestricted resources can attack all the chan-

nels simultaneously with sufficient power to make it infeasible
for the nodes to operate. However, often the jammers are subject
to power limitation and are of the similar configurations as the
legitimate nodes, making it feasible to launch a defense. We
consider attack from multiple jammers that are IBFD-capable.
Specifically, each jammer attacks one of the channel in F
in each time slot and simultaneously observes the activity of
legitimate nodes (if any) and learns jamming outcome using its
RF receiving chains.

The jammers can co-ordinate among themselves by attacking
non-overlapping channel to increase their chance of success.
Further, when a jammer detects activity on a channel, they can
all simultaneously attack the same channel causing maximum
degradation in the link quality. Then, multi-jammer attack is
equivalent to a single jammer that attacks m channels sequen-
tially in a time slot. Also, the jammer should attack each channel
sufficiently long to be more effective, otherwise nodes can easily
recover lost packets from brief outages. We thus consider a single
jammer that sequentially attacks m < K channels in each slot.
We assume that the jammer transmits at sufficiently high power
such that whenever both the jammer and the nodes are on the
same channel it drives PDR to a low value resulting in zero
throughput for the nodes.

In this paper we consider a IBFD reactive jammer. At the
beginning of a time slot, the jammer continuously emits white
Gaussian noise into the channel and, at the same time, uses its
IBFD capability to listen for nodes’ activity on the channel. If
the jammer detects nodes’ activity, it continuously attacks the
channel until nodes leave that channel. If the jammer does not
detect node activity for a while, it moves to attack other channels.

III. JAMMING GAME: ATTACK AND DEFENSE STRATEGIES

In this section we discuss attack and defense techniques
for the jammer and the nodes respectively. As discussed in
[12], attack and defense strategy update is like an arms race
between the jammer and nodes. The best attack (defense)

3This scenario arises when jammer is in the proximity of one node but ’hidden’
from the other.

Fig. 4: System model.

strategy of the jammer (nodes) depends on the strategy adopted
by its opponent. As a bare minimum, the nodes must hop onto
different channel to avoid jamming. Below we discuss few
rounds of arms race.

A. Attack Strategy

When the jammer is aware that the nodes can hop channel,
one naive attack strategy is to randomly choose m out of the K
channels with equal probabilities in each time slot. In this case, as
argued in [12], the nodes should stay on the same channel as they
are equally vulnerable on all channels4. Anticipating the nodes’
response, the jammer may now go through all the K channels
sequentially, jamming m channels in each slot without overlap
and repeat the sweeping process continuously. If the jammer
follows a deterministic sweep pattern, the nodes can effectively
counter the jamming attack by avoiding the channels the jammer
attacks in a given slot. Aware of this nodes’ response, the jammer
could further randomize its sweep pattern after completing a
sweep cycle.

Sweep Jammer: In the next round of arms race, the nodes
can update their strategy as follows. Once the nodes are jammed
in a sweep cycle, they can simply turn off their transmitters. Not
finding any activity on the channel, the jammer leave the channel
and continue the current sweep cycle. The nodes can then restart
operation on the same channel and they will not be jammed again
till the end of current sweep cycle . As the nodes are jammed
at most once in each cycle, the average throughput achieved by
the nodes operating in the TR mode is 2(K −m)ξR/K. If the
transmitters were to use FH, they can improve the throughput
utmost by 2ξmR/K but may also suffer throughout loss due
to channel switching. When the gain is small compared to the
switching loss, the nodes may prefer to stay on the same channel
and tolerate the small loss in throughput due to jamming attack.

IBFD Reactive Sweep Jammer: Aware of nodes’ response
to sweep jamming attack, the jammer may then update its
strategy to restart a new sweep cycle with randomly ordered
sweep pattern each time the nodes leave the channel after being
jammed. This increases the rate of jamming the nodes if they
always stay on the same channel. Then, the strategy of the nodes
is not to use the same channel but to switch channels. Moreover,
with the IBFD capability, the jammer can discern the nodes’
activity, if any, on channels it is jamming. Hence, the jammer
can continue jamming until the nodes hop. Its operation in each
time slot is depicted in Figure 5.

4The probability of getting jammed is m/K in each time slot, whether the
nodes hop or not
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Fig. 5: IBFD Reactive Sweep Jammer: In each time slot, the
jammer attacks currently selected channel and observes channel
activity. If activity is observed, it stays on the channel and
continuously attack it (ENGAGE). Otherwise, it RESTARTs a
new sweep patten if the current cycle ends, else attacks next
channel in the sweep cycle (CONTINUE).

B. Defense Strategy
When the nodes observe low PDR, hopping to a different

channel is not a good strategy, as (i) the new channel could
be in fading, and (ii) switching channels results in throughput
loss. However, if the nodes can verify presence of a jammer,
they must hop to a different channel, otherwise they will be
continuously jammed. Thus, when the PDR is low, nodes can
switch to TD mode (if not already in this mode) to ascertain
the cause of failure before taking an action.

Note that if transmission fails in TR mode due to jamming
attack, the nodes will be jammed again if they switch to TD
mode in the next time slot. However, if the nodes are already
in the TD mode when they are jammed, then they know the
cause of transmission failure and leave the channel. Also note
that when the nodes are jammed in the TR mode, they have
to re-establish both the links and suffer throughput loss of 2L.
Whereas in TD mode, throughput loss due to jamming is L as
the nodes need to re-establish only one link. Thus, operating
in TR mode gives higher throughput of 2ξR, but no jamming
can be detected and transmission loss is high. In the TD mode
throughput is only R, but any jamming activity can be detected
and transmission loss is less. We define the reward for each node
and in each round n as

R(n) ={
2ξR · 1[Success]− 2L · 1[Jammed]− 2C · 1[Hop] in TR
R · 1[Success]− L · 1[Jammed]− C · 1[Hop] in TD, (1)

where 1[·] denotes the indicator function.
Performance metric: Suppose the nodes have full knowledge
of the jammer’s sweep pattern, they can evade the jammer with
minimal switching cost: in each sweep cycle, the nodes hop when
the jammer is about to sweep their channel and operate on the
new channel for the rest of the time in the TR mode. If the nodes
hop to a channel that was previous swept by the jammer in each
sweep cycle, then the nodes are never jammed. By repeating
this process, the nodes can get the highest average throughput
per round which can be computed as

Rm = p(2ξR)− (1− p)(2L)− 2mC/K. (2)

In the absence of such knowledge, nodes like to use a policy
that achieves average throughput per round as close as to (2).

Fig. 6: Smart sweep jammer.

Let Rπ(n) denote the throughput in round n from policy π. We
define regret of a policy π over period T as follows:

Reg(T, π) = Rm −
1

T

T∑
n=1

Rπ(n) (3)

The goal of the nodes is to use a policy that minimizes the regret.
Given that the nodes know strategy of the smart sweep jammer
(but not the sweep pattern itself), the nodes can estimate the
likelihood of jamming attack in the current slot and pro-actively
decide to leave the channel. Then, in each time slot, the nodes
have to decide whether to stay on or leave the current channel
and also the mode of operation. We refer to the number of time
slots the nodes operate on a channel before they leave it without
being jammed as channel residence time. The channel residence
time indicates frequency of node hops, and thus influences the
throughout loss due to channel switching.

Intuitively, the best policy for the nodes is to operate in the
TR mode on a channel and switch to the TD mode after certain
time slots to detect presence of any jamming activity. The nodes
leave the current channel, either after detecting the jammer, or
when the jammer is likely to arrive on the current channel. Note
that current decision of the nodes influences their throughput
in the subsequent slots. In the next section, we formalize this
intuition by defining appropriate state and action space and derive
the optimal strategy using Markov decision process. We will be
interested in both total discounted and average reward criteria.

IV. MARKOV MODEL

We begin by defining the state space, action space and derive
the transition probabilities of the Markov chain. First, note that
while nodes operate on a channel, say f , they do not know which
channels the jammer is currently sweeping. If the nodes succeed
on f for k slots, they can only infer that the jammer did not
sweep f in the last k slots. Thus, keeping track of which channels
the nodes operated in the past and how many slots they stayed
on them is not helpful. We use these observations in defining the
state space and derivation of the transition probabilities below.
For ease of notation, we write K̃ = dKme.
States: The state denotes the transmission status of the nodes at
the end of a time slot. Let X denote set of states given by

X = {J, y1, y2, · · · , yK̃−1, u1, u2, · · ·uK̃−1}.

The state space contains two classes of states: jamming detected
and jamming undetected. The former contains only state J ,
denoting the transmission failure due to the jamming attack
(i.e., without ambiguity, jamming is detected)5. Since the
nodes can resolve the cause of transmission failure in the
TD mode, the transmitter takes state J while operating in
the TD mode only. The second class of states (jamming not
detected) has two subclasses, namely Y := {y1, y2, · · · , yK̃−1}

5Note that fading and jamming can simultaneously disrupt a transmission, in
such a case, we still call it the state J .



and U := {u1, u2, · · · , uK̃−1}. State yk ∈ Y denotes that
the nodes has been staying on a channel continuously for
k time slots (since they last hopped onto that channel, i.e.,
including failed transmissions and the current slot) and has not
detected presence of jammer unambiguously and the current
transmission succeeds. State uk ∈ U denotes that the nodes
has been staying on a channel continuously for k time slots
(since they last hopped onto that channel, i.e., including failed
transmissions and the current slot) and has not detected presence
of jammer unambiguously and the current transmission fails.
The subclasses Y and U both have K̃ − 1 states, because m
channels are jammed in each time slot and then the nodes
can stay on the same channel unjammed for at most K̃ − 1
slots. A state uk distinguishes from a state yk by checking the
transmission’s failure (uk) or success (yk) in the current slot.
Note that the current state of the Markov chain is observable
only to the nodes. We use x ∈ X to denote a generic state.

Actions: The set of actions available to the nodes is denoted as
A and is given by:

A = {(s, TD), (h, TD), (s, TR), (h, TR)}.

We assume that the nodes take action at the end of each time
slot after observing its current state, resulted from the effect
of its previous action. Action s1 := (s, TD) denotes that the
nodes stay on the same channel it used in the previous slot and
operate in the TD mode. Action h1 := (h, TD) denotes that
the nodes hop to a new randomly selected channel and operate
in the TD mode. Similarly, s2 := (s, TR) denotes that the
nodes stay on the same channel and operate in the TR mode
and h2 := (h, TR) denotes that they hop to a randomly selected
channel and operate in the TR mode. Note that after observing
a failure in the TR mode (i.e., uk states), the nodes should
either hop (using h1 or h2) or stay in the TD mode to detect
the nature of failure but not stay in the TR mode (i.e., action s2

should not be used in uk). This allows the nodes to come out
of uk states sooner in case the channel is under jamming6. We
use a ∈ A to denote a generic action.

Rewards: Let U(x, a, x′) denote the reward to the transmitter
when it takes action a ∈ A in state x ∈ X and enters into state
x′ ∈ X . Using (1) we define rewards of the nodes in different
states as follows:

U(·, a, x′) =

2ξR, if a = s2, x
′ = yk, k = 1, 2, · · · , K̃ − 1

−2L, if a = s2, x
′ = J or uk, k = 1, 2, · · · , K̃ − 1

R, if a = s1, x
′ = yk, k = 1, 2, · · · , K̃ − 1

−L, if a = s1, x
′ = J or uk, k = 1, 2, · · · , K̃ − 1

R− C, if a = h1, x
′ = y1

−L, if a = h1, x
′ = J or u1

2ξR− 2C, if a = h2, x
′ = y1

−2L, if a = h2, x
′ = u1.

Transition probabilities: As the nodes take action based only
on its current state, the state evolves according to a Markov chain
on X . Let P (x′|x, a) denote the probability that the nodes enter
state x′ ∈ X when they took action a ∈ A in state x ∈ X .
For notational convenience, let Ak denote the event that nodes
are not jammed for k time slots since they last hopped. Note
that this event precludes that the nodes are not jammed in all
the earlier k − 1 slots. It is straight forward to compute that

6This also helps derive transition probabilities using one step history.

Pr(Ak) = 1− 1/(K̃ − k) and used repeatedly in the following
computations.

Given (x, a) = (J, s1) or (J, s2): Recall that smart sweep
jammer can detect activity on the channels while jamming, and
hence continues to jam the channel till the nodes leave that
channel, i.e., P (J |J, a) = 1 for all a = s1, s2. Thus, in state
J , the nodes should only take action h1 or h2, otherwise they
will get jammed again in the next slot. Given (x, a) = (J, h1):
When the nodes take action h1 in state J they can enter state
J or y1 or u1. In state J , the nodes leave the channel and the
jammer restarts the sweep cycle. The probability they hop onto
the same channel in the next slot is 1/K̃. We get

P (J |J, h1) = 1/K̃,

P (u1|J, h1) = (1− P (J |J, h1))× Pr(fading),

=

(
1− 1

K̃

)
(1− p),

P (y1|J, h1) = 1− P (J |J, h1)− P (u1|J, h1).

(4)

Given (x, a) = (J, h2): The new possible states are y1 or u1.
The following are straightforward

P (y1|J, h2) = P (y1|J, h1),

P (u1|J, h2) = 1− P (y1|J, h2).
(5)

Given (x, a) = (yk, s1), k = 1, 2, · · · K̃ − 2: As the nodes
can verify the cause of transmission failure in the TD mode,
the nodes enter state J only if jamming attack is successful,
otherwise the nodes enter the state yk+1 or uk+1 depending of
state of the channel. The nodes are jammed in this case if the
jammer enters the channel that the nodes are currently using,
and this channel is not swept by the jammer in the last k slots.
∀k = 1, 2, · · · K̃ − 2 we have

P (J |yk, s1) =
1

K̃ − k
,

P (uk+1|yk, s1) = Pr(Ak)× Pr(fading)

=

(
1− 1

K̃ − k

)
(1− p),

P (yk+1|yk, s1) = 1− P (J |yk, s1)− P (uk+1|yk, s1).

(6)

Given (x, a) = (yk, s2), k = 1, 2, · · · K̃ − 2: The nodes can
transit to uk+1 or yk+1. New state is uk+1 if the transmission
fails due to fading or jamming or both. The nodes enter into
state yk+1 only if the channel remains good and nodes are not
jammed in slot k. We get:

P (yk+1|yk, s2) = 1− P (uk+1|yk, s2)

=

(
1− 1

K̃ − k

)
p = P (yk+1|yk, s1).

(7)

Given (x, a) = (yk, h1), k = 1, 2, · · · , K̃−2: When the nodes
take action h1, they are operating in the TD mode and can
unambiguously determine the cause of transmission failure. Also,
when it hops, counting of number of slots spent on the new
channel restarts. Thus, if the nodes take action h1, it enters state
J or y1 or u1. When the nodes hop from a channel, say f , to
one of the K − 1 channels chosen uniformly at random, it will
not get jammed if 1) the new channel is already swept by the
jammer while it operated on f , i.e., the new channel is one of
mk channels swept by the jammer in the last k slots or 2) the
nodes hop to one of the other K − 1−mk channels not swept



by the jammer yet, but the jammer did not hop to that channel
in the current time slot. Then, we get

P (y1|yk, h1) + P (u1|yk, h1) = 1− P (J |yk, h1)

=

(
mk

K − 1
+
K − 1−mk

K − 1

(
1− 1

K̃ − k

))
,

p(y1|yk, h1) = p (1− P (J |yk, h1)) .

(8)

Given (x, a) = (yk, h2), k = 1, 2, · · · , K̃ − 1: The new states
can be u1 or y1. When hopping, the probability of entering an
y1 state is the same regardless of being in TD or TR mode (i.e.,
regardless of taking action h1 or h2). We have:

P (y1|yk, h2) = P (y1|yk, h1)

P (u1|yk, h2) = 1− P (y1|yk, h2).
(9)

Given (x, a) = (uk, s1), k = 1, 2, · · · K̃ − 2: The nodes move
to state J or uk+1 or yk+1. Given that the nodes are in state
uk implies that the previous transmission failed. If the failure
happened due to jamming, the new state is J for sure (with
probability 1). If the cause of failure was fading, new state can
be J only due to jamming in the current slot. The new state is
yk+1 if the channel is under fading in the previous channel and
the transmission is successful in the current slot. We have:

P (J |uk, s1) =
1

K̃ − k + 1
+ (1− p) 1

K̃ − k
,

P (yk+1|uk, s1) = (1− p)p
(

1− 1

K̃ − k

)
P (uk+1|uk, s1) = 1− P (J |uk, s1)− P (yk+1|uk, s1).

(10)

Given (x, a) = (uk, h1), k = 1, 2, · · · K̃ − 2: The nodes can
transit to state J or u1 or y1. If the failure happens in the previous
slot due to jamming, the nodes enter state J after h1 when
the new channel is jammed. Since jammer restarts its sweeping
cycle, this probability is 1/K̃. If the failure in the previous slot
is due to fading, the probability that the nodes get jammed in
the next slot is the same as P (J |yk, h1). Additionally, the nodes
move to state y1 if the new channel is not jammed and not in
fading. We have:

P (J |uk, h1) =
1

(K̃ − k + 1)K̃
+ (1− p)P (J |yk, h1)

P (y1|uk, h1) = p(1− P (J |uk, h1))

P (u1|uk, h1) = 1− P (J |uk, h1)− P (y1|uk, h1).

(11)

Given (x, a) = (uk, h2), k = 1, 2, · · · K̃ − 2: The node can
move to state u1 or state y1. It enters state y1 if the channel is
not jammed and not under fading. We have:

P (y1|uk, h2) = P (y1|uk, h1),

P (u1|uk, h2) = 1− P (y1|uk, h2).
(12)

Possible transitions are shown in the Figure 7 and 8.

Lemma 1: The longer the nodes succeed on a channel, the
higher the chance of success on the new channel when it hops.

Proof: The proof follows by verifying that P (y1|yk, h1) is
increasing in w.r.t. k, i.e.,

P (y1|yk+1, h2) ≥ P (y1|yk, h2)

P (y1|yk+1, h1) ≥ P (y1|yk, h1).
(13)

Intuitively, the longer the nodes stay on a channel and their
current transmission succeed, the higher the number of channels
that the jammer swept on which the nodes did not operate (in

the current sweeping cycle). Hence, when it hops, it is likely
that the new channel was already swept by the jammer and will
be not attacked in the current sweep cycle. However, longer the
nodes stay on a channel, the probability they get jammed on the
channel increases. This implies that the nodes should balance
the probability of getting jammed on the current channel and the
probability of not getting jammed when they hop by a proper
choice of channel residence time.

Policy: Policy of the transmitter is defined as the action it
takes in each state. We shall be interested in Markov stationary
policies, where the nodes take an action based on current state
and follows the same policy in each time slot7. Let π : X → A
denote such a policy where π(x) is the action when the nodes
are in state x. We denote the collection of such policies as Π.

A. Optimal Defense Strategy in Discounted Reward Criterion
For a given π ∈ Π, the expected total discounted payoff of the
nodes with an initial state x ∈ X is

V (x, π) = Eπ
[ ∞∑
n=1

δn−1r(Xn, An)|X1 = x

]
,

where {(Xn, An), n = 1, 2, · · · ,∞} is a random process of
state-action pair, that evolves according to the initial state and
policy π. r(Xn, An) denotes the immediate payoff in time slot
n for taking action An in state Xn. The objective of the nodes
is to choose a policy that maximizes V (x, π) starting from any
initial state, i.e., ∀x ∈ X

V (x) = max
π∈Π

V (x, π). (14)

The well-known Bellman equations for the expected discounted
utility maximization problem in (14) are as follows:

Q(x, a) =
∑
x′∈X

p(x′|x, a){U(x, a, x′) + δV (x′)} (15)

V (x) = max
a∈A

Q(x, a) (16)

We can then use the value iteration [20][Ch. 6] method to derive
the optimal defence strategy and its properties.

Proposition 1: The optimal policy π∗ satisfies:
• There exists a constant K∗ ∈ {1, . . . , K̃ − 1} and i∗ ∈
{1, 2} such that:

π∗(yk) = hi∗ for K∗ ≤ k ≤ K̃ − 1 and π∗(J) = hi∗ .

• There exits a constant K∗1 ≤ K∗ such that π(yk) = s2 for
all 1 ≤ k ≤ K1∗ and π(yk) = s1 for all K1∗ < k < K∗.

Lemma 2: V (yk) ≥ V (yk+1) for all k ≤ K∗ and V (yk) <
V (yk+1) for k ≥ K∗.

Proof: Using the Bellman relation in (16), we have

V (yk) ≥ Q(yk, a) for all a ∈ A

From the value iteration algorithm we know that if we start
with any initialization of V0(x), x ∈ X converges to the values
V (x). Without loss of generality assume that at some iteration
i, vi(yk) ≥ V (yk+1) for k ≤ K∗ and Vi(yk) < Vi(yk+1) for all
k ≥ K∗. Then using the last inequality we can show that the
same ordering holds for (i+ 1)th iteration as well.

Proof sketch of Proposition 1: (Details in [21]) Using Lemma
2, we show that Q(yk, s1) and Q(yk, s2) are decreasing in
k, while Q(yk, h1) and Q(yk, h2) are increasing in k. The
structure of the policy then follows by noting that optimal

7For the discounted average criteria, any history-dependent policy can be
replaced by an Markov stationary policy that is equally good [20][Ch. 4].



Fig. 7: State transition diagram when action is
‘stay’

Fig. 8: State transition diagram when action is
‘hop’

action is each state is selected greedily according to (16). �

The above result suggest the following optimal strategy: If
the nodes are successful on a channel for K∗ number of slots,
they should leave the channel. On the new channel, nodes should
operate for the next K∗ slots unless they are jammed. While they
stay on the new channel, the nodes should operate in the TR for
the first K∗1 slots, and then switch to the TD mode for the next
K∗ −K∗1 slots. If they are jammed while operating in the TD
mode they should hop immediately. We note that, for some set
of parameters, the optimal policy could be such that K∗1 = 1, in
which case the nodes never use the TR mode, and in some cases
K∗1 = K∗, in which case the nodes never use the TD mode. In
state uk, the nodes use either s1 or hop depending on C and L.

Corollary 1: The threshold K∗ is increasing in K, and
decreasing in both L and C.

Proof: The proof follows by noting that for any k′ > k,
Q(yk′ , si) − Q(yk, si) is increasing in L and decreasing in
K,∀i ∈ {1, 2}. Moreover, Q(x, hi) is decreasing in C,∀i ∈
{1, 2}, x ∈ X . This verifies that K∗ is decreasing in C.

B. Optimal Defense Strategy in Average Reward Criterion
In the sequel, we follow conventional notations in [8]. The

immediate reward of the transmitter when taking (pure) action
a at state x is:

r(x, a) =
∑
x′∈X

U(x, a, x′)P (x′|x, a) (17)

The immediate expected reward of the transmitter at state x
w.r.t. a stationary strategy Π is:

r(x,Π) =
∑
a∈A

r(x, a)π(x, a) (18)

Lets define a |X| × |X| stochastic transition probability
matrix P where its element P (x, x′) is the transition proba-
bility from state x to state x′ when the stationary policy Π
is employed. Let r(t)(x,Π) be the expected reward at time t

when the transmitter starts with an initial state x, and r(t)(Π)
def
=

(r(t)(1,Π), · · · , r(t)(|X|,Π)) be the expected reward vector for
all initial states x ∈ A. We have:

r(t)(Π) = P tr(Π) (19)

where r(Π)
def
= (r(1,Π), · · · , r(|X|,Π)) is the vector of imme-

diate expected reward of the transmitter for all |A| initial states.

If the underlying Markov chain for a given stationary policy
π ∈ Π is irreducible, the following average reward (or reward
rate) of the transmitter (while starting from state x) exists:

V av(x,Π)
def
= lim
T→∞

1

1 + T

T∑
t=0

r(t)(s,Π) (20)

From the above transition probabilities, for any stationary
policy π(x, :) that implements either action h1 or s1 with non-
zero probability, the transmitter can visit state J and from state
J , it can recover to move to any state yk and uk with non-
zero probability. In such cases, the underlying Markov chain
is irreducible and the above average reward is well-defined.
However, the irreducibility of the Markov chain is not always
guaranteed. For example, when chance of being under fading
1 − p is so small that a transmission failure likely suggests
it is under jamming, it is not necessary for the transmitter to
determine the cause of failure but to hop onto another channel.
In such cases, state J is not visited. Hence, the selection of
using the average reward criterion should depend on the channel
quality.

According to Theorem 2.4.4 and Corollary 2.4.5 in [8],
there exists an optimal NE pure strategy π∗ to maximize the
transmitter’s average reward. The pure strategy is formally stated
as follows.

Let a 4|X| × 1 vector f
def
= [fx,a] =

([f(1, s1), · · · , f(1, h2)], · · · , [f(|X|, s1), · · · , f(|X|, h2)])
be the solution of the following programming:

maximize
{fx,a}

∑
x∈X

∑
a∈A

r(x, a)fx,a

s.t. C1: Wx = 0
C2: 1Tf = 1
C3: fs,a ≥ 0,∀x, a

(21)

where 1 is a all-one 1 × 4|X| vector; W is an 4|X| × |X|
matrix whose element W (x′, (x, a)) = −P (x′|x, a) if x′ 6= x or
W (x′, (x, a)) = 1− P (x′|x, a) if x′ = x.

Then, π∗(x, a) = 1 if f(x, a) > 0, otherwise π∗(x, a) = 0.

V. PERFORMANCE EVALUATION

To demonstrate the benefits of using the TR and TD opera-
tional modes we compare the performance of our policy, referred
to as “Joinlty Optimal” against two strategies which we refer as
“Optimal FH” and “Random FH”. Optimal FH policy is obtained
by optimizing the channel residence time restricting the mode of
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Fig. 15: Average goodput vs. C

2 4 6 8 10 12
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Channel Switching Cost (C)

Su
cc

es
s 

R
at

e

 

 

Jointly Optimal (FH+TR/TD)
Optimal FH (FH+TR)
Random FH (FH+TR)
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operation to TR only. In the Random FH policy, nodes always
hop and use only the TR mode. The jointly optimal and the
optimal FH policy are computed solving Bellman equations in
(15) using value iteration algorithm, allowing both TR and TD
modes for the former and allowing only TR mode for the later.
For all the policies we compute the average goodput (in Mbps),
the success rate (percentage of un-jammed transmissions), and
the average regret (in Mbps) as in equation (3). The parameters
of study are K, C, L, and ξ. We set R = 25 Mbps and p = .8
and m = 2. Unless stated otherwise, we use the following
parameters: K = 8, L = 6 Mbps, C = 8 Mbps, ξ = .7, in

the plots. We show the performance for the policy for the case
of discounted rewards. Similar behavior is expected for the case
of average reward.

It is easy to see that if the nodes hop in every slot, then the
probability of them getting jammed in a slot is the lowest. Hence,
if C = 0 and L = 0, the optimal policy for the nodes is to hop
in each slot, i.e., the Random FH policy, and it results in highest
success rate. We thus selected Random FH for comparison with
the success rate of the optimal policies.
Effect of number of channels (K): Figures. 9, 10, 11 plot the
average goodput, success rate, and average regret of the three



algorithms vs. the number of channel K. As seen, the Jointly
optimal policy attains much higher goodput (up to 300% when
K is large) than the Optimal FH (TD mode is not used) or
Random FH. This is due to the effective utilization of TD mode
to learn the jammer’s behavior to increase the channel residence
time (which in turn increases probability of success on hopping).
Since the nodes hop in every time slot in the Random FH policy,
its success rate is higher than that of the optimal hopping policy
(Fig. 10). However, hopping too frequently makes the random
hopping policy’s goodput much lower than that under the Jointly
optimal policy (Fig. 9). This is because the Jointly optimal policy
efficiently avoids unnecessary hops to reduce switching costs.
From Fig. 11, Jointly optimal policy has the smallest regret, and
as the number of channels increases, its regret approaches zero
faster than the others. Additionally, as the number of channel
increases, the Jointly optimal policy becomes more efficient in
combating the jammer in all performance metrics.
Effect of transmission cost (L): Figures 12, 13, and 14 depict
goodput, success rate, and average regret vs. L of the three algo-
rithms. The average goodput of Optimal policy is significantly
higher (more than 43%) than the other policies, especially when
the transmission cost is higher (Fig. 12). This is because with
higher transmission cost, the loss due to failure/jamming is also
higher, that makes the optimal decisions in hopping or switching
TD/TR mode of the jointly optimal policy more pronounced. As
we can see in Fig. 13, the success rate of the Jointly optimal
policy is almost the same as that when the nodes hop after every
time slot (this suffers from excessive loss in hopping/failure
cost). The average regret of Jointly optimal policy is the smallest
and also increases much slower w.r.t. the transmission cost than
the random FH and using TR mode only policies (Fig. 14).
Effect of hopping cost (C): In Figures 15, 16, and 17 we com-
pare the performance of Jointly optimal policy against Random
FH and Optimal FH as C varies. The effect of C is similar to
that of L in Figures 12, 13, and 14 and the jointly optimal policy
is the most robust algorithm to jamming (with more than 20%
higher goodput, on average, than others’).
Effect of imperfect SIS ξ: Figures 18, 19, and 20 depict
the goodput, success rate, and average regret vs. the effect of
imperfect SIS (ξ) of the Jointly optimal policy against Random
FH and Optimal FH. As can be seen, the less perfect SIS (i.e.,
lower ξ), the more effective in combating jamming of the Jointly
optimal policy. On average, the Jointly optimal policy yields
more than 45% goodput than the Random FH policy. Similar to
the above, the success rate of the Jointly optimal policy is almost
the same as that when nodes hop in every time slot. In Fig. 20,
the Jointly optimal policy’s average regret is also lowest among
the three policies for various ξ.

VI. CONCLUSION

We identified the severe susceptibility to jamming attack of
wireless nodes that are equipped with in-band full-duplex radios
(IBFD). To combat jammers, we then defined two operational
modes for the IBFD radios: Transmission Reception (TR) and
Transmission Detection or half-duplex (TD). Together with the
low Packet Detection Rate, jamming can be effectively detected
by allowing IBFD radios to switch to the TD mode. Using
Markov decision processes, we developed an optimal strategy
against an “IBFD reactive sweep jammer”. The optimal defense
strategy informs the nodes when to switch to half-duplex mode
and when to hop to a new channel. Numerical investigations
showed that the optimal strategy improves the network through-
put up to a few times, under jamming attacks.
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